Olay (olasılık kuramı)

Olasılık kuramında olay, kendisine bir olasılık değeri atanan sonuç kümesine verilen addır. Örnek uzayın sonlu olması durumunda bu kümenin herhangi bir altkümesi bir olay oluşturmaktadır. Ne var ki, bu yaklaşım örnek uzayın sonsuza uzandığı durumlarda işe yaramamaktadır. Bu nedenle, olasılık uzayı tanımlamalarında örnek uzayın bazı altkümeleri göz önüne alınmaz.

Örnek

52 karttan oluşan bir oyun kâğıdı destesinden kart çekme işlemi 52 elemanlı bir örnek uzay oluşturmaktadır. Olay ise bu örnek uzayın tek elemanlı tüm altkümeleridir. Boş küme ve destenin tümü ayrı tutulursa geriye kalan tüm olaylar örnek uzayın kurallı altkümeleridir. Bu olaylardan bir bölümü şunlardır:

Olasılık uzaylarında olaylar

Örnek uzayın tüm altkümelerinin olaylar olarak tanımlanması sonlu sayıda sonuç için sorun yaratmazken sonsuz durumlar için doğru sonuç vermemektedir. Normal dağılım gibi birçok olasılık dağılımı; örnek uzayı, gerçel sayılar kümesi ya da bu kümenin bazı altkümeleri olarak tanımlamaktadır. Gerçel sayılar kümesinin tüm altkümelerinin olasılıklarını tanımlamak özellikle ölçüsüz kümeler gibi 'kuralsız' kümeler için neredeyse olanaksızdır. Bu, olasılık tanımlamalarının daha sınırlı altkümeler için yapılmasını zorunlu kılmaktadır. Birleşik ve koşullu olasılık gibi kavramların doğru sonuçlar üretebilmesi için sayılabilir birleşim ve kesişimler altında kapalı bir küme (sigma-cebir gibi) kullanmak gerekmektedir. Borel ölçümü aralık birleşim ve kesişimleri için iyi sonuç verirken Lebesgue ölçümü uygulamada daha başarılıdır.

Olasılık uzaylarının genel ölçü kuramsal tanımına göre bir olay, örnek uzay altkümelerinin belirli bir sigma-cebir elemanıdır. Bu tanıma göre, örnek uzayın σ-cebirin elemanı olmayan herhangi bir altkümesi bir olay oluşturmamakta ve bu nedenle herhangi bir olasılığa sahip bulunmamaktadır.

Gösterim

Olaylar her ne kadar bir Ω örnek uzayının altkümeleri olsalar da, rassal değişkenlerin de içinde bulunduğu önerme ifadeleri olarak yazılmaktadırlar. Örneğin X, Ω örnek uzayı üzerinde tanımlı gerçel değerli bir rassal değişken ise

ifadesine ulaşılır. Bu,

olarak da yazılabilir.

Ayrıca bakınız

This article is issued from Vikipedi - version of the 10/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.