Akaike ölçütü

Akaike ölçütü (Akaike information criterion-AIC) belirli bir veri kümesi için kaliteli bir istatistiksel göreceli model ölçüsüdür. Yani, veri modelleri koleksiyonu verildiğinde, AIC her model kalitesini, diğer modellerin her birini göreceli olarak tahmin ediyor. Dolayısıyla, AIC model seçimi için bir yol sağlar. Akaike ölçütü bilgi teorisi üzerine kurulmuştur, verilen bilgiler model verileri oluşturur, işlem temsil etmek için kullanılır, göreceli bir tahmin sunmaktadır. Böylece, modelin uyum iyiliği ve model karmaşıklığı anlaşılır. Akaike ölçütü boş hipotez testi anlamında bir model testi sağlamaz; yani akaike ölçütü mutlak bir anlamda modelin kalitesi hakkında bir şey söyleyebilir. Eğer tüm aday modeller kötüyse herhangi bir uyarı vermeyecektir.


İstatistiksel bir model ele alalım. L modeli için olabilirlik fonksiyonu maksimize değeri olsun; k modelde tahmin edilen parametre sayısı olsun. Böylece modelin akaike ölçütü değeri şudur [1]

Tarihçe

Akaike bilgi ölçütü, Akaike Hirotugu tarafından geliştirilmiştir. 1971 yılında bir sempozyumda Akaike tarafından duyurulmuş ve 1973 yılında yayınlanmıştır.[2][3]

Okumalar

Kaynakça

This article is issued from Vikipedi - version of the 6/2/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.