Ayrılma belitleri

Ayrılma belitleri bir topolojik uzayın üzerine konan ve noktaların ve altkümelerin birbirilerinden ne kadar ayrı olduğunu belirten belitler ailesi. Bir topolojik uzayın bu belitlerden birini sağladığı söylendiğinde, topolojisi hakkında global bir bilgi verilmiş ve topolojinin cinsi daraltılmış olur. Örneğin, topolojinin sahip olduğu açık kümelere bakmaksızın o topolojinin T0 olduğunu söylemek, topolojik uzayda seçilmiş herhangi iki noktanın birbirlerinden ayırdedilebilir olduğunu garanti eder.

Ayrılma belitleri Almanca'da ayrılma anlamına gelen Trennung sözcüğüne atıfta bulunarak T harfiyle gösterilir. Bu belitlerden bazıları çok eskiden ifade edilmiştir, bazıları daha yenidir. Kimileri çalışılan matematik dalına göre ifadesinde farklılık göstermiş ve zaman içinde şöyle böyle standart bir listeye kavuşulmuştur. Kaynağına bağlı olarak adlandırmalar farklılık gösterebilir.

Matematiksel tanımlar


X topolojik bir uzay olsun.

Illustrations of the properties of Hausdorffness, regularity and normality
Hausdorff, düzenli (İng. regular) ve normal uzaylar. Mavi alanlar açık kümeleri, kırmızı alanlar kapalı kümeleri, kara yuvarlaklar noktaları temsil ediyor.

Yukarıda saydığımız ayrılma belitlerinin tanımdan gelen bir hiyerarşileri vardır. Listede daha başta olanlar, sonra gelenlerden daha genel durumlardır:

T0 > T1 > T2 > T > T3 > T > T4 > T5 > T6.

This article is issued from Vikipedi - version of the 3/30/2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.