Ölçek değişmezi

Wiener süreci ölçek-değişmezidir.

Fizik, matematik, istatistik ve ekonomide, ölçek değişmezliği uzunluk, enerji, ya da diğer değişkenlerin ölçülerinin, bir ortak faktör ile çarpılır olup olmadığı değişmez nesneler veya yasaların bir özelliğidir. Bu dönüşüm için teknik terim (ayrıca dilatasyon olarak da bilinir) bir genişleme ve dilatasyon ayrıca daha büyük bir açı korur simetrinin bir parçasını oluşturabilir.

Ölçek-değişmez eğriliği ve kendine-benzerlik

matematikte, değişkeninin yeniden ölçeklendirilmesi altında bir fonksiyon veya eğrinin ölçek özellikleri düşünülebilir. Şöyleki bazı ölçek faktörü için ın biçimi içinde ilgilidir,bu bir uzunluk veya yenden ölçeklendirme boyutu olarak alınabilir.Genellikle için gerekli tüm yeniden ölçeklendirme altında değişmez olarak alınmıştır

üstelinin bazı seçimleri ve tüm genişlemeleri, bir homojen fonksiyon olan f için eşdeğerdir.

Ölçek-değişmez fonksiyonların örnekleri tek terimlilerdir, bunun için idi,bu açıklık

içinde

Bir ölçek-değişmez eğrinin bir örneği logaritmik spiraldir, genellikle doğal görünen eğrinin türüdür.polar koordinatların (r, θ) spiral olarak yazılabilir

eğrinin dönmeleri için izin veren, bu tüm yeniden ölçeklendirme altında değişmezdir; bu ve nın bir dönel versiyonu için özdeştir.

İzdüşümsel geometri

Bir tekterimli ölçekli değişmezliği fikri yüksek boyutlarda homojen polinom fikrine ve daha genel olarak bir homojen fonksiyona yaygınlaştırılır. Homojen fonksiyonlar yansıtmalı alan doğal yerlileriyiz ve homojen polinomlar izdüşümsel varyeteler ve izdüşümsel geometri olarak incelenmiştir. Projektif geometri matematiğin özellikle zengin bir alandır; en soyut formlarında, geometrisi şemaları, o string teorisi çeşitli konulara bağlantıları vardır.

Fraktallar

Bir Koch eğrisi kendine-benzerliktir.

Bazen bu söylenen fraktallar ölçek-değişmezidir, daha kesin olarak , söylemek gerekir ki kendine-benzerdir. Bir fraktal tipik değerler sadece ayrı bir küme için kendisine eşittir, ve daha sonra, fraktalın kendisine bir öteleme ve dönme için eşleşme uygulanmalıdır. Böylece, ölçeği ile Koch eğrisi örneği, ama n tamsayısının değeri için yalnızca ölçek tutar. Buna ek olarak, Koch eğrisinin orijininde sadece ölçekleri değil ,ama, Belli bir anlamda, "her yerde":kendisinin minyatür kopyaları tüm eğrisinin boyunca bulunabilir.

Bazı fraktallarda aynı anda oyunda birden fazla ölçekleme faktörleri olabilir; böyle ölçeklendirmeler çoklu-fraktal analizi ile inceleniyor.

Evrensellik

Evrensellik olarak bilinen bir fenomende fiziksel sistemlerin büyük bir çeşitliliği görülmektedir. Farklı mikroskobi fiziği faz geçişinde aynı ölçekleme davranışına yol açabilir fikrini ifade eder. Evrensellik kurallı bir örnek aşağıdaki iki sistemden oluşur:

Bu iki sistemin Mikroskobik fiziği tamamen farklı olsa bile, kendi kritik üslerinin aynı olduğu ortaya çıkar. Ayrıca, aynı bir istatistiksel alan teorisi kullanarak bu üsleri hesaplayabilirsiniz.Kritik nokta dalgalanmaları bütün uzunluk ölçeklerinde oluşabilir ve böylece bir olguyu tanımlamak ve değişmeyen bir ölçek için istatistiksel alan teorisine bakmalıdır önemli gözlem, bir faz geçişi olup olmadığıdır.Bir anlamda, evrensellik nispeten birkaç tür değişmeyen ölçek teorilerinin olduğu bir gözlemdir.

Aynı ölçek değişmezliği teorisinde anlatılan farklı mikroskobik teoriler kümesi evrensellik sınıfı olarak bilinir. Bir de evrensel sınıfa ait sistemlerinin diğer örnekleri şunlardır:

Anahtar gözlem bu farklı sistemlerin tümü için, bir faz geçişi tutumuna benzer ve istatistiksel mekanik ve ölçek değişmeyen dili istatistiksel alan teorisi, onları tanımlamak için uygulanabilir olmasıdır.

Ölçek değişmezinin diğer örnekleri

Uygulanan kuvvetin yokluğunda Newtonyen akışkanlar mekaniği

Belirli koşullar altında,, akışkanlar mekaniği bir ölçek değişmez klasik alan teorisidir. alanlar sıvı akışının hızıdır, , sıvı yoğunluğu, , ve sıvı basıncı, . Bu alanlar Navier–Stokes denklemi ve süreklilik denkleminin herikisini karşılamalıdır.Bir Newtonyen akış için bu sıralı formlar alınır

burada dinamik kıvamdır.

Akışkan yoğunluğu için sıvı basıncı ile ölçek değişmezliğini anlamak için bu denklemler özel bir durumun denklemidir, durum denklemi akışkan tipine ve maruz kaldığı koşullara bağlıdır. Örneğin, izotermal, ideal gaz düşünürsek, bunu karşılar

burada sıvıdaki sesin hızıdır. Durumun bu denklemi göz önüne alındığında, Navier-Stokes ve süreklilik denklemi dönüşümler altında değişmez kalmaktadır

verilen çözümleridir ve ,elimizde otomatik olarak var and ayrıca çözümleridir.

Bilgisayarla görme

Bilgisayarla görme, ölçek değişmezliği görüntünün ölçeği değiştiğinde değişmez kalan yerel bir resim açıklaması anlamına gelir. Normalize türev yanıtların ölçekler üzerinden yerel maksimum algılama bu alanda ölçek değişmezliği elde etmek için genel bir çerçeve sağlar. Örnekler uygulamaları ölçek değişmezliği özellik dönüşümü yoluyla damla algılama, sırt algılama ve nesne tanıma içerir

Ayrıca bakınız

Kaynakça

    Daha fazla bilgi

    This article is issued from Vikipedi - version of the 3/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.