Genel görelilik

Genel Görelilik
  • Genel bakış
    • Tarihçe
    • Matematik
    • Kaynaklar
    • Testler
  • Denklik prensibi
  • Einstein denklemi
  • FLRW çözümü
  • Kesin çözümler
  • Kara delik
  • Kerr çözümü
  • Kuantum yer çekimi
  • Kütle çekimsel dalga
  • Kütle çekimsel mercek
  • Olay ufku
  • Schwarzschild çözümü
  • Tekillik
İlgili başlıklar
düzenle 
Arka fondaki Samanyolu ile 600 kilometre uzaklıktan görülen 10 güneş kütlesindeki karadelik simülasyonu

Genel görelilik ya da göreliliğin genel kuramı, 1916 yılında Albert Einstein tarafından yayımlanan kütleçekimin geometrik kuramı,[1] ve bugün modern fizikte kütle çekimi tanımladığı düşünülen kuramdır. Genel görelilik, özel görelilik ve Newton'ın evrensel kütleçekim yasasını genelleştirerek kütleçekimin uzay ve zaman ya da uzay-zamanda tanımlanmasını sağlar.

Uzayzamanın eğriliği, madde ve radyasyonun enerji ve momentumu ile doğrudan bağlantılıdır. Genel göreliliğin zamanın akışı, uzayın geometrisi, serbest düşme yapan cisimlerin hareketi, ışığın yayılımı gibi konulardaki öngörüleri, klasik fiziğin önermeleri ile belirgin farklılıklar gösterir. kütleçekimsel zaman genişlemesi, kütleçekimsel merceklenme, ışığın kütleçekimsel kızıla kayması, kütleçekimsel zaman gecikmesi bu farklılıkların örnekleridir. Genel göreliliğin bugüne kadarki tüm önermeleri deney ve gözlemler ile doğrulanmıştır. Her ne kadar genel görelilik kütleçekimin tek göreli kuramı olmasa da, deneysel veri ile uyum sağlayan en basit teoridir. Buna rağmen, teorinin hala cevaplayamadığı sorular varlığını sürdürmektedir. Bunlara örnek olarak pioneer uydusunun hareketi, galaksilerin dönüş eğrisi, genel görelilik ile kuantum mekaniğinin yasalarının hangi şekilde bağdaştırılarak, tamamlanmış kendi içinde tutarlı bir kuantum alan kuramı yaratılabileceğidir.

Einstein'in teorisinin astrofiziğe kayda değer etkileri vardır. Örneğin, büyük bir yıldızın ömrünün sonuna yaklaştığı bir zamanda içine çökerek karadelik oluşturduğuna işaret eder. Bazı astronomik cisimlerin yaydığı yoğun radyasyona karadeliklerin sebep olduğuna dair yeterli kanıt mevcuttur. Örneğin mikrokuasarlar, yıldızsal karadeliklerin ve aktif galaktik çekirdekler, süpermasif karadeliklerin varlıklarının bir sonucu olarak oluşurlar.

Işığın kütleçekim nedeniyle bükülmesi, uzaktaki bir astronomik cismin gökyüzünde aynı anda birden fazla yerde görüntüsünün belirmesine sebep olan, kütleçekimsel merceklenme olarak adlandırılan bir duruma neden olur. Genel görelilik aynı zamanda, bugüne kadar ancak dolaylı olarak gözlenmiş olan, kütle çekim dalgalarının da varlığını öngörmektedir. Buna dair doğrudan gözlemlerin yapılması LIGO ve NASA/ESA Laser Interferometer Space Antenna (Lazer girişimölçer uzay anteni) gibi projelerin amaçlarıdır. Tüm bunlara ek olarak genel görelilik, evrenin durmaksızın genişleyen modelinin bugünkü kozmolojik modelinin temelidir.

Tarihçe

1905'te göreliliğin özel teorisini açıkladıktan hemen sonra, Einstein bu göreli çerçeveye kütleçekimini nasıl dahil edeceğine dair fikir yürütmeye başladı. 1907 yılında serbest düşen bir gözlemciyi ele alan basit bir düşünce deneyinden yola çıkarak kütleçekimin göreli teorisi üzerine sekiz yıl sürecek bir araştırmaya başladı. Birçok denemenin ardından, bugün Einstein alan denklemleri olarak bilinen çalışmasını sonlandırarak, Kasım 1915'te Prusya Bilimler Akademisinde sundu. Bu denklemler Einstein'ın kuramının çekirdeğini oluşturur ve herhangi bir maddenin uzay ve zamanı nasıl etkilediğini belirler.[2]

Einstein alan denklemleri doğrusal olmayan ve çözümü oldukça zor olan diferansiyel denklemlerdir. Einstein, başlangıçta kuramını öngörüye dayanarak biçimlendirmişti. Ancak çok zaman geçmeden 1916 yılında, astrofizikçi Karl Schwarzschild Einstein alan denklemlerinin ilk kesin ve sıfırdan farklı çözümünü bulmayı başardı. Bu çözüm Schwarzschild metriği olarak adlandırılır.

Schwarzschild metriği ile, kütleçekimsel içe çökmenin son evrelerinin, yani bugün bilinen adıyla karadeliklerin, tanımının temelleri ortaya koyulmuştur. Aynı yıl Schwarzschild çözümünün elektrik yüklü cisimler için genelleştirilmiş çözümü olan Reissner–Nordström çözümüne ulaşıldı. Bugün bu çözüm elektrik yüklü karadelikler için kullanılmaktadır.[3]

1917'de Einstein, kuramını, evrenin bütününe uygular ve göreli kozmolojinin temelini atar. Genel göreliliğin öngörüsü evrenin genişlemekte ya da büzülmekte olduğu iken, Einstein evrenin durağan olduğunu düşünmektedir ve bunu sağlamak için orijinal alan denklemlerine kozmolojik sabit olarak adlandırdığı yeni bir parametre ekler.[4]

Ancak 1929'da Hubble evrenin durağan olmadığı, genişlediği şeklinde bir çalışma yaptı. Friedmann 1922'de yaptığı çalışmada genişleyen evren modelini kozmolojik sabit kullanmaksızın ortaya koymuştur. Lemaître bu çözümü Büyük patlama'nın ilk modelini formüle etmek için kullanmıştır.[5] Evrenin genişlediğine dair gözlemlerden sonra, Einstein, kozmolojik sabiti, hayatının en büyük hatası olarak tanımlar.[6]

Bu süre zarfında genel görelilik merak uyandıran bir kuram olarak kalır. Özel göreliliğin yasaları ile uyumlu olması ve Newton kuramının açıklayamadığı bazı etkilere cevap getirmesi nedeni ile açıkça Newtonsal kütleçekime karşı bir üstünlüğü vardır. 1915'te kuramının Merkür'ün günberi noktasının devinimi problemine keyfi değişkenler kullanmadan nasıl açıklık getirdiğini, Einstein bizzat kendisi açıklamıştır.[7]. 1919'da Eddington tarafından yönetilen bir keşif, 29 Mayıs 1919 tarihindeki tam güneş tutulması sırasında yıldız ışığının güneş tarafından aynı genel göreliliğin öngördüğü şekilde büküldüğünü doğrulamış[8] ve Einstein'ın ününü daha da arttırmıştır.[9] Ancak kuram, altın çağını 1960 ve 1975 yılları arasında yaşamış ve ancak bundan sonra teorik fiziğin ana dallarından biri olarak kabul görmüştür.[10]

Klasik mekanikten genel göreliliğe

Genel göreliliği iyi anlamanın yolu klasik mekanik ile benzerliklerini ve farklılıklarını gözden geçirmektir. Öncelikle klasik mekaniğin ve Newton'un kütleçekim yasasının geometrik bir şekilde tanımlanabileceği bilinmelidir. Bu tanım özel göreliliğin yasaları ile birleştirilerek, genel göreliliğin yasaları becerikli bir fizikçi tarafından türetilebilir.[11]

Newton kütleçekiminin geometrisi

Genel göreliliğe göre, kütleçekim alanındaki bir cisim ile kapalı bir kutu içinde ivmelenen bir cisim benzer şekilde davranır. Örneğin, roketin içindeki gözlemci (solda) ve Dünya'daki gözlemci (sağda) topun düşüşünü aynı algılar. Bunun sebebi roketin ivmelenmesinin aynı göreli kuvveti yaratmasıdır.

Klasik mekaniğin özünde, bir cismin hareketinin serbest (ya da ivmeli) hareketinin ve bu serbest hareketten sapmaların bileşimi yatar. Bu sapmalar cisme etkiyen dış kuvvetlerin varlığından kaynaklanır ve kuvvetin tanımı Newton'un ikinci yasası ile verilmiştir. İkinci yasa bir cisme etkiyen net kuvvetin cismin eylemsiz kütlesi ve ivmesinin çarpımı kadar olacağını söyler.[12] Cismin tercih edeceği eylemsiz hareket, uzay ve zamanın geometrisine bağlıdır: Standart olarak klasik mekaniğin referans çerçevelerinde serbest hareket yapan cisimler düz çizgiler boyunca sabit hızla hareket ederler. Günümüz terminolojisinde, cisimlerin eğri uzayzamandaki bu yollarına jeodezik denilmektedir.[13] Aksine bir zaman koordinatının yanı sıra, gözlemleyerek ve dış kuvvetleri (elektromanyetizma ve sürtünme gibi) tolerans ederek tanımlanan eylemsiz hareketlerin uzayın geometrisini belirlemek için kullanılması beklenilebilir. Fakat yerçekimi devreye girer girmez bir belirsizlik oluşur. Newton'un evrensel kütle çekim yasası ve bağımsız doğrulanan Eötvös deneyi ve onun ardıllarına göre, serbest düşüşün bir evrenselliği vardır. (ayrıca eylemsiz ve pasif yerçekimsel kütlenin evrensel eşitliği ya da zayıf eşitlik ilkesi olarak da bilinir): serbest düşüş halindeki test cisminin yörüngesi sadece pozisyonuna ve ilk hızına bağlıdır fakat materyal özelliklerine bağlı değildir. Bunun basitleştirilmiş versiyonu Einstein’ın asansör deneyinde, sağ tarafta gösterilen figürde, somutlaştırılır. Küçük kapalı bir odadaki bir gözlemci için odanın kütle çekimsel alanda durağan ya da kütleçekimine eşit kuvvet üreten ve ivmelenen bir rokette boş uzayda olup olmadığına aşağı bırakılan bir cisim gibi yörüngelerini haritalayarak karar vermek mümkün değildir. Serbest düşüşün evrenselliği göz önünde tutulursa eylemsiz hareket ile kütleçekimsel kuvvet etki altındaki hareket arasında gözlemlenilebilir fark yoktur. Bu kütleçekimi etkisi altında serbest düşüş yapan cisimler olarak adlandırılan eylemsiz hareketin yeni bir sınıfının tanımını destekler. Tercih edilmiş hareketlerin yeni sınıfı ayrıca matematik terimleri ile uzayın ve zamanın geometrisini açıklar.Bu bir kütleçekimsel potansiyelin değişim derecesine bağlı olan özel bağlantı ile ilişkili jeodezik bir harekettir. Bu yapıdaki uzay hala tipik bir Öklit geometrisine sahiptir. Fakat uzay zaman bir bütün olarak daha karışıktır. Farklı test parçacıklarının serbest düşüş yörüngelerini takip eden basit bir düşünce deneyi kullanarak gösterilebileceği üzere, bir parçacığın hızını gösterebilen uzay zaman vektörlerinin (zaman vektörleri gibi) taşınmasının sonucu parçacığın yörüngesine göre değişiklik gösterecektir; matematiksel konuşmak gerekirse Newtonsal ilişkisi tümlevlenemez. Bundan uzay zamanın eğri olduğu sonucu çıkarılabilir. Sonuç sadece eşdeğişken kavramları kullanan Newton kütleçekiminin geometrik bir denklemlendirilmesidir, i.e herhangi bir koordinat sisteminde arzulanan geçerli bir tanım. Bu geometrik tanımda gelgit etkileri - serbest düşüş halindeki cisimlerin göreceli ivmesi- kütlenin varlığının geometriyi nasıl değiştirdiğini gösteren bağlantının türevi ile ilişkilidir.

Göreli Genelleme

Her ne kadar geometrik Newton yerçekimi şaşırtıcı olsa da temeli, klasik mekanik, sadece (özel) göreli mekaniğin sınırlı durumudur. Kütleçekiminin ihmal edilebileceği simetri dilinde klasik mekanikteki fizik Galilei sabiti yerine genel görelilikte olduğu gibi Lorentz sabitidir. (Genel göreliliği tanımlayan simetri ayrıca öteleme ve dönmeyi içeren Poincare grubudur). İkisi arasındaki farklılık ışık hızına yaklaşan hızlarda ve yüksek-enerji durumlarında uğraştığımızda daha fazla öneme sahip olur.

Lorentz simetrisi ile ilave yapılar devreye girer. Bunlar ışık konileri grubu ( sol taraftaki resim ) ile tanımlanırlar. Işık konileri nedensel bir yapı oluştururlar: her A olayı için prensipte ya etkileyen ya da sinyal yolu ile ya da ışıktan fazla hızlı yol almasına gerek olmayan etkileşimlerden (resimdeki B olayında olduğu gibi) etkilenen olaylar topluluğu vardır ve böyle bir etki için olaylar topluluğu mümkün değildir.(resimdeki C olayında olduğu gibi) Bu gruplar gözlemciden bağımsızdır. Serbest düşüş yapan parçacıkların hayat çizgisi ile bağlantılı olarak ışık konileri uzay zamanın yarı Riemannian metriğini tekrar oluşturması için kullanılabilir, en azından pozitif bir sayısal faktöre bağlı olarak. Matematik terimlerinde bir konform yapıyı tanımlar.

Özel görelilik kütleçekimi yokluğunda tanımlanır. Bu yüzden pratik uygulamalar için ne zaman kütleçekimi ihmal edilebilirse edilsin bu uygun bir modeldir. Eğer yerçekimini dahil eder ve serbest düşüsün evrenselliğini varsayarsak bir önceki bölümdeki benzer bir düşünce uygulanır: evrensel eylemsiz çerçeveler yoktur. Bunun yerine serbest düşüş yapan parçacıkların yanı sıra hareket eden yaklaşık olarak eylemsiz çerçeveler vardır. Uzay-zaman diline çevrilirse, kütleçekimi serbest bir eylemsiz çerçevesi tanımlayan düz zaman çizgileri birbirine göre eğilmiş çizgilere dönüşür (kütleçekiminin dahil edilmesinin uzay zaman geometrisinde bir değişiklik gerektirdiğini farz edersek).

Serbest düşüşteki yeni kısmi çerçevelerin özel görelilik yasalarının- teori ışığın yayılımına dayalıdır ve bu yüzden elektromanyetizmaya da bağlıdır- uygulandığı referans çerçeveleri ile uyuşup uyuşmadığı açık değil. Fakat özel görelili çerçevelerin tuttuğu (dünyaya sabit ya da serbest düşüş durumundaki gibi) hakkında farklı varsayımlar kullanarak kütleçekiminden kızıla kaymaya farklı tahminler türetilebilir. Kütleçekiminden dolayı kızıla kayma ışığın yerçekimsel bir alana doğru yayılırken frekansının değişmesidir. Gerçek ölçümler serbest düşüş çerçevelerinde ışığın özel görelilikte olduğu gibi yayıldığını gösterir. Serbest düşüş (ve dönmeyen) çerçeve referanslarındaki özel görelilik yasası ile adlandırılan durumun genelleştirilmesi Einstein’ in eşitlik ilkesi olarak bilinir. (kütleçekimini dahil edilmesi için özel göreli fiziğe göre çok önemli temel bir ilkedir.)

Aynı deneysel bilgiler yerçekimsel bir alanda saatlerle ölçülen zaman özel görelilik kurallarını takip etmez. Uzay zaman geometrisi dilinde Minkowski metriği ile ölçülmez. Newtonsal durumda olduğu gibi bu daha fazla genel bir geometriyi akıla getirir. Küçük ölçeklerde serbest düşüşteki bütün çerçeve referansları eşittir ve yaklaşık olarak Minkowakiandır. Bu yüzden Minkowski uzayının eğri bir genelleştirilmesi ile uğraşmıyoruz. Geometriyi özellikle açıların ve uzunlukların nasıl ölçüldüğünü tanımlayan metrik tensörü özel göreliliğin Minkowski metriği değildir. Pseudo-Reimannian metriği olarak bilinen bir genellemedir. Hatta her Reimannian metriği doğal olarak özel bir bağlantı türü ile ilişkilidir, Levi-Civita bağlantısı ve aslında eşitlik ilkesini karşılayan ve uzayı Minkowskian yapan bir bağlantıdır. (uygun yerel bir eylemsiz koordinatlarda metrik Minkowskiandır ve kısmi türevleri ve bağlantı katsayıları sıfır olur.)

Einstein'in Denklemleri

Temel makale: Einstein alan denklemleri ve genel göreliliğin matematiği

Kütleçekiminin göreli geometrik versiyonunun etkilerini formülleştirdikten sonra yerçekiminin kaynağı sorusu geride kalır. Newton yerçekiminde kaynağı kütledir. Özel görelilikte kütle stresin(basınç ve kayma) yanı sıra enerji ve moment yoğunlukları içeren enerji-momentum tensör olarak adrandırılan daha genel bir niteliği çağrıştırır. Eşitlik ilkesini kullanarak bu tensör kolayca eğri uzay zamana genelleştirilir. Analojiyi geometrik Newton yerçekimi ile kaleme alırsak yerçekimi için alan denklemi nin bu tensör ve özel bir gelgit etkilerinin sınıfını tanımlayan Ricci tensörü ile ilgili olduğunu varsaymak doğaldır.(ilk başta durağan ve sonra serbest düşüş yapan küçük bir test parçacıkları grubu için hacimdeki değişim)Özel görelilikte enerji korunumu – momentum enerji durumuna karşılık gelir- momentum tensörü ıraksayışı serbesttir. Bu formül ayrıca kısmi türevlerini eğri-manifold eşleri ile değiştirerek kolayca eğri uzaya genelleştirilebilir.( eşdeğişken türevler türevlenebilir geometride çalışıldı.)Bu ek koşul ile enerji-moment tensörünün eğdeğişken ıraksayışı, ve bu nedenle denklemin diğer tarafında ne olursa olsun Einstein’ in (alan) denklemleri olarak adlandırılan en basit bir takım denklemler:

Sol taraftaki Einstein tensörüdür , Ricci tensörünün özel ıraksayışı serbest kombinasyonu ve metriğidir. simetriktir. Özellikle ,

, eğim skaleridir. Ricci tensörü daha genel Riemann eğrilik tensörü ile ilgilidir.

Sağ taraftaki, enerji-moment tensörüdür. Bütün tensörler soyut dizin semboller ile yazılır. Gezegen yörüngeleri için teorinin tahminleriyle gözlemlenen sonuçları eşleştirirsek orantı sabiti κ = 8πG/c4 olarak sabitlenebilir, G kütleçekimi katsayısı ve c ışığın hızıdır. Enerji-momentum tensörünün sıfır olması için madde yok ise sonuçlar boşluktur.

Tanım ve temel uygulamalar

Ayrıca gör: Genel göreliliğin matematiği ve genel görelilik ile değiştirilen fiziksel teoriler

Bir önceki bölümde bahsedilen türev, inşa modeli için nasıl bir teori kullanılabileceğini açıklayan , fizikteki önemli bir sorunun adresi ve anahtar özelliklerini tanımlayan, genel göreliliği tanımlayabilmek için gerek duyulan bütün bilgileri içerir.

Tanım ve temel özellikler

Genel görelilik yerçekiminin bir metrik teorisidir. Dört boyutlu bir geometri, uzay zamanı belirten pseduo-Reimannian, ile uzay zamanda bulunan enerji-moment arasındaki ilişkiyi tanımlayan Einstein’ nin denklemleri bir çekirdek gibidir. Kütleçekimi kuvveti ( serbest düşüş, orbital hareket ve uzay aracı yörüngeleri gibi) etkisini isnat eden klasik mekanikteki olay, genel görelilikteki uzay zamanın eğik geometrisindeki eylemsiz harekete denk gelir.(nesneleri düz ve doğal yollarından saptıran bir kütleçekimi kuvveti yoktur.) Aslında kütleçekimi uzay ve zamandaki değişikliklerine karşılık gelir- nesnenin doğal bir biçimde takip edebileceği mümkün en düz yolları değiştirir. O halde eğiklik maddenin enerji- momentumundan dolayı oluşur. John rölativist Archibald Wheeler’ e göre uzay zaman maddeye nasıl hareket edeceğini söyler, madde uzaya nasıl bükeceğini söyler.

Simetrik bir iki-dizi tensör ile genel görelilik klasik fiziğin sayısal kütleçekimsel potansiyeli değiştirirken, ikincisi birincisini kesin sınırlayıcı durumlarda azaltır. zayıf kütleçekimi alanları ve ışığın hızına göre yavaş hız için teorinin tahminleri Newton’ un evrensel kütleçekimi yasasını birleştirir.

Tensörleri kullanarak oluşturulduğu üzere, genel görelilik genel kovaryansı gösterir.(yasası ve genel göreli sistemde formülleştirilen diğer yasalar bütün koordinat sistemlerinde aynı biçimde yer alır. Buna ek olarak teori hiçbir sabit geometrik zemin içermez, i.e. zeminden bağımsızdır . Bu nedenle daha sıkı , fiziğin yasalarının bütün gözlemciler için aynı olduğunu söyleyen bir izafiyetin genel ilkesi karşılar. eşitlik ilkesinde açıklandığı üzere, uzay zaman Minkowskidir, ve fizik yasaları kısmi Lorentz sabitini sunar.

Model-kurma

Genel göreli model kurmanın ana fikri Einstein’ in denklemlerinin bir çözümünden gelir. Einstein’ in denklemleri ve maddenin özellikleri için uygun denklemlere görei böle bir çözüm spesifik bie yarı-Riemmannian kopyası ( genellikle spesifik koordinatlarda metrik vererek tanımlanan), ve spesifik o kopyada tanımlanan madde alanlarından oluşur. Madde ve enerji Einstein’ in denklemlerini sağlamalıdır, bu yüzden özellikle maddenin enerji-moment tensörü ıraksaması sabit olmalıdır. Tabiki madde ayrıca herhangi ek denklemleri de sağlamalıdır. Kısacası, böyle bir çözüm genel göreliliğin yasalarını tatmin eden bir modeldir, ve mümkün olduğunca herhangi maddeyi ele alan ilave yasalar ortaya konulabilir.

Einstein’ in denklemleri doğrusal olmayan kısmi diferansiyel denklemlerdir ve çözümü de zordur. Yine de, sadece bir kaçı direk fiziksel uygulamalara sahip olsa da, birkaç tamı tamına doğru çözümleri vardır. Bilinen en iyi tam çözümleri ve ayrıca fizik görüşü açısından en ilgi çekici olanları Schwarzschild çözümü , Reissner-Nordström çözümü ve Kerr metriği ( başka bir boş uzayda her biri kara cismin belirlenmiş bir türüne karşılık gelir) ve Friedmann-Lemaitre-Robertson-Walker ve de Sitter evrenleridir .( her biri genişleten bir kozmozu tanımlar.) Büyük teorik görüşünün tamı tamına çözümleri Gödel evrenini ( eğri uzay zamanlarda, zaman yolculuğunun merak uyandırıcı bir olasılığına açık), Taub-NUT çözümü (homojen bir model evreni fakat yöne bağlı değil) ve anti-de Sitter uzayını (son zamanlarda Maldacena tahmini ile ön planda olan) içerir.

Tam çözümleri bulmadaki zorluk durumunda bilgisayarda integral ile ya da asıl çözümlerin küçük sapmalarını düşünerek Einstein’ in alan denklemleri ayrıca sık sık çözülür. Numarasal göreli alanlarda, iki çarpışan kara delik gibi Einstein’ in ilginç durumlarda denklemlerini çözmek için ve uzay zaman geometrisini benzeştirmek için güçlü bilgisayarlar kullanılır. Özellikle yeterli bilgisayar kaynakları ile bu metotlar herhangi bir sisteme uygulanabilir ve yalın tuhaflıklar gibi temel problemlere çözüm kazandırabilir. Doğrusallaşmış kütleçekimi ve genelleştirilmesi, post-Newton genişlemesi, gibi sapma teorileri ile yaklaşık sonuçlar bulunabilir. Işığa kıyasla yavaşça hareket eden bir madde dağılımı içeren uzay zamanın geometrisi için çözümde ikincisi sistematik bir yaklaşım sağlar. Genişleme terimlerin bir serisini içerir; ikinci terimler genel görelilik yüzünden Newton’ un teorisine daha az düzeltmeleri gösterirken, birinci terimler Newton yerçekimini gösterir. Bu genişlemenin büyümesi alternatif teoriler ile genel göreliliğin tahminleri arasında nicel kıyaslamalara olanak sağlayan parametre edilmiş post-Newton’ dur.

Einstein’ in teorisinin sonuçları

Genel görelilik birçok fiziksel sonuçlara sahiptir. Bazıları direk teorinin aksiyomlarından takip eder, bazıları ise sadece Einstein’ in ilk yayını olan 90 yıllık araştırmaları ile açıklığa kavuşur.

Kütleçekimi ile zaman genleşmesi ve frekans kayması

Temel metin: Kütleçekimi ile zaman genleşmesi

Eşitlik ilkesinin geçerli olduğunu varsayarsak, zamanın akışını yerçekimi etkiler. Kütleçekimi haznesine gönderilen ışık maviye kayar ve diğer yönden gönderilen (yerçekimi haznesinden çıkan) ışık kırmızıya kayar; bu iki etkiler kütleçekimi ile frekans kayması olarak adlandırılır. Daha genel olarak, uzakta olan yerler ile karşılaştırıldığında büyük bir cismin yanında işlem daha yavaş gerçekleşir; bu etki kütleçekimsel zaman genişlemesi olarak bilinir.

Kütleçekimi ile zaman genleşmesi ve frekans kayması

büyük bir cisimden uzaklaşan bir ışık dalgasının kütleçekimsel kırmızıya kaymasının sistematik gösterimi

Temel metin: Kütleçekimi ile zaman genleşmesi

Eşitlik ilkesinin geçerli olduğunu varsayarsak, zamanın akışını kütleçekimi etkiler. Kütleçekimi haznesine gönderilen ışık maviye kayar ve diğer yönden gönderilen( kütleçekimi haznesinden çıkan) ışık kızıla kayar; bu iki etkiler kütleçekimi ile frekans kayması olarak adlandırılır. Daha genel olarak, uzakta olan yerler ile karşılaştırıldığında büyük bir cismin yanında işlem daha yavaş gerçekleşir; bu etki kütleçekimsel zaman genişlemesi olarak bilinir. Kütleçekiminden kızılaya kayma laboratuvarlarda ölçülmekledir ve astronomik gözlemler kullanılmaktadır. Evrensel Mevki Sisteminin operasyonunun bir yan etkisi karşıladığı halde, dünyanın kütleçekimi alanındaki kütleçekimsel zaman genleşmesi atomik saatler kullanılarak ölçülmektedir. Bütün sonuçlar genel görelilik ile uyuşmaktadır. Fakat doğruluğun geçerli seviyesinde bu gözlemler eşiklik ilkesinin geçerli olduğu genel görelilik ve diğer teoriler arasındaki farkı ayırmaz.

Zaman genleşmesi ve kütleçekimsel zaman gecikmesi

Temel metin: genel görelilikteki Kepler sorunu , Kütleçekimsel lensler ve Shapiro gecikmesi

yoğun bir maddenin yanında(gri renkte gösterilen) ışığın sapması (mavi taraftan gönderilen)

Genel görelilik ışığın yolunun yerçekimsel alanda büküldüğü kehanetinde bulunur; ağır bir cismin yanından geçen ışık o cisme doğru sapar. Bu etki Güneşin yanından geçerken sapan uzak quasarların ya da yıldızların ışığını gözlemleyerek doğrulanmaktadır.

Bu ve ilgili tahminler önemsiz jeodezik ya da ışık seven olarak adlandırılan gerçeklerden takip edilir.-klasik fizikteki ışığın hareketine doğru olan düzgün çizgilerin bir genelleştirilmesi. Bu tür jeodezikler özel görelilikteki ışık süratı sabitinin genelleştirilmeleridir. Uygun uzay zaman modelleri ( ya dış Schwarzschild çözümü ya da birden fazla tek kütle için post-Newtoncu genleşmesi ) açıklandığı üzere, yerçekiminin ışığın ortaya dağılmasındaki birçok etkileri. Serbest düşüşün evrenselliğini ışığa vererek ışığın bükülmesi türetebildiği halde, bu tür hesaplamalardan sonuçlanan ışının sapması sadece genel görelilik tarafından verilen değerin yarısıdır.

Kütleçekimsel zaman gecikmesi ışığın sapması ile yakından ilgili olduğu için kütleçekimsel bir alana doğru ışık sinyallerinin hareket etmesi  alan yokluğundakilere göre daha uzun sürer.bu tahmin için çok  fazla başarılı testler yapılmaktadır. parametre edilmiş post-Newtoncu biçimcilikte ışığın sapmasının ve kütleçekimsel zaman gecikmesinin ölçümleri kütleçekiminin uzayın geometrisi üzerindeki etkisini şifreleyen γ ile adlandırılan bir parametreyi belirler.

Yörüngesel etkiler ve göreliliğin yönü

Kütleçekimsel dalga tarafından etkilenen test parçacıklarının çemberi

Temel metin: Genel görelilikte Kepler sorunu

Yörüngesel cisimler konusundaki birçok tahminler açısından genel görelilik klasik mekanikten farklıdır. Gezegensel yörüngelerin tam bir dönüşünü tahmin eder. (kütleçekimsel dalgaların emilimi ve göreliliğin yönü ile ilgili etkilerin neden olduğu yörüngesel gecikmelerde olduğu gibi)

Apsislerin devinimi

Genel görelilikte herhangi bir yörüngenin apsisi ( yörüngesel hareket eden bir cismin sistemin kütlesinin merkezine en yakın olduğu yer) devinecektir- yörünge eliptik değildir fakat odağına göre dönen bir elipse benzer( gül eğimi gibi bir şekil ile sonuçlanır(resmi gör)). Einstein ilk olarak yörüngesinde hareket eden bir cisme bir test parçacığı gibi davranarak ve Newton limitini gösteren yaklaşık bir metrik kullanarak bu sonucu çıkardı. Urbain Le Verrier tarafından 1859 da keşfedilen Merkür gezegeninin anormal günberi değişiminin açık bir açıklamasını veren teorisi onun için kütleçekimsel alan denklemlerinin doğru halini tanımladığı önemli bir kanıttı. Tam tamına Schwarzschild metriği ( uzay zamanı küresel bir kütle etrafında tanımlayan) ya da daha gele post-Newton biçimciliği kullanarak etki ayrıca türetebilir. Bu durum, bir cismin kütleçekiminin öz enerjine katkısı (Einstein’ in denklemlerinin doğrusal olmayışlığında şifrelenen) ve kütleçekiminin uzayın geometrisindeki etkisinden dolayıdır. Kesin devinim ölçümleri sağlayan bütün gezegenler (Merkür, Venüs ve Dünya) için göreli devinim gözlenmektedir.

Yörüngesel gecikme

PSR1913+16 için yörünesel gecikme: zamandeğişimi saniye cinsinden, otuz yıl üzeri geçmiş.

Yörünge gecikmesi Genel göreliliğe göre, ikili sistem enerji kaybederken yerçekimsel dalgaları emecektir. Bu kayıp yüzünden iki yörüngesini izleyen iki cisim arasındaki mesafe azalır ve bu yüzden yörüngesel periyotları da azalır. Güneş sisteminde ya da sıradan çift yıldızlar için etki çok az gözlemlenebilir. İki yörüngesel hareket yapan nötron yıldızları (birisi pulsardır) yakın bir çift pulsar için değildir; pulsardan Dünyadaki gözlemciler, yörüngesel periyodun ölçümlerini sağlayan ve yüksek doğruluğa sahip saat gibi görev yapabilen düzenli bir radyo bakliyatlarını alabilirler. Nötron yıldızları çok yoğun olduğu için enerjinin önemli bir miktarı kütleçekimsel radyasyon olarak salınır.

Yerçekimsel dalgaların salınması yüzünden yörüngesel periyotlarındaki azalmanın ilk gözlemi 1974 de keşfedilen PSR1913+16 çift pulsarı kullanarak Hulse ve Taylor tarafından yapıldı. 1993 Nobel Ödülünü kazandıkları yerçekimsel dalgaların ortaya çıkımı bir ilkti. O zamandan beri birçok diğer pulsarlar bulundu; özellikle PSR J07337-3039 çift pulsarı.

Jeodezik devinim ve çerçeve sürüklenmesi

Birçok göreli etkiler yönün göreliliği ile direk bağlantılıdır. Biri jeozdezik devinimdir: eğik uzay zamanda serbest düşüşteki bir jiroskobun yönünün ekseni, böyle bir jiroskop mümkün olduğunca kararlı bir biçimde bir yolu sürdürmenin yolunu gösterdiği halde uzak yıldızlardan gelen ışığın yönü ile karşılaştırıldıkça değişecektir. ( paralel taşıma ) Ay-Dünya sistemi için bu etki ayla ilgili lazer değişimleri yardımı ile ölçülmektedir. Daha yaygın olarak, % 0.3 den daha iyi bir hassasiyet ile Kütleçekimi B Araştırması uydusunda test kütleleri için ölçülmektedir.

Dönen bir kütlenin yanında çerçeve sürüklenmesi etkisi adında etkiler vardır. Uzak bir gözlemci kütleye yakın cisimler sürükleneceğini saptayacaktır. Bu aşırı dönen kara delikler içindir. (sıcak bir alana giren herhangi bir cisim için dönme kaçınılmazdır) Bu tür etkiler serbest düşüşte jiroskopların yönelimi üzerindeki etkileri ile tekrardan test edilebilir. Az çok tartışmaya açık testler LAGEOS uyduları kullanarak yapılmaktadır. ayrıca Evrensel Mars Araştırmacısının Mars üzerine incelemesi kullanılmaktadır.

Astrofizik uygulamaları

Kütleçekimsel bir lensten üretilen aynı astronomik cismin dört resmi

Temel metin: Kütleçekimsel lens Kütleçekimi ile ışığın sapması astronomik olayın yeni bir sınıfının sorumludur. Eğer ağır bir cisim astronom ile uygun kütleli ve göreli mesafeli uzak hedef bir etkiler arasına yerleştirilir ise astronom hedefin birçok saptırılmış görüntülerini görecektir. Bu tür etkiler kütleçekimsel lens olarak bilinir. Görünüşe ve kütle dağılımına dayanarak iki ya da ikiden fazla görüntüleri olabilir, parlak çember Einstein’ in çemberi olarak bilinir. En eski örneği 1979 yılında keşfedildi ve o zamandan beri yüz den fazla kütleçekimsel lensler gözlemlendi. Çözülebilmesi için birçok görüntüler birbirlerine yakın olsa bile etki hala ölçülebilir.( birçok mikro lens olayları gözlemlenmektedir)

Kütleçekimsel lens gözlemsel astronomide gelişmektedir. Kara deliğin varlığını ve yayılımını göstermek için kullanılır.(uzak galaksileri gözlemlemek için doğal bir teleskop sağlar ve bağımsız Hubble sabitinin tahminini elde etmeye katkıda bulunur) Lens bilgilerinin statiksel değerlendirmeleri galaksilerin yapısal evrimine değerli bir anlayış katar.

Kütleçekimsel dalga astronomisi

Artis’ in kütleçekimsel dalga algılayıcısına LISA izlenimi

Çift pulsarların gözlemleri kütleçekimsel dalgaların varlığı için güçlü dolaylı bir kanıt sağlar.(yukarıdaki yörüngesel gecikmeyi gör) Fakat kozmosun derinliklerinden bize ulaşan kütleçekimsel dalgalar direk olarak algılanmamıştır. Görelilikle ilgilenen araştırmacıların temel amacı böyle bir buluştur. Birçok kütleçekimsel dalga buluşları denenmektedir ve en önemlisi ferrometrik detektörlerdir: GEO 600 , LIGO (iki detektör), TAMA 300 ve VIRGO . Çeşitli zamanlama okları 10−9 -10−6 Hertz frekansları aralığındaki kütleçekimsel dalgaları( çift çok ağır kara deliklerin oluşturduğu) algılamak için milisaniye pulsarları kullanır. Avrupalı uzay detektörü Elısa / NGO sürekli gelişme aşamasındadır. (başlangıcı 2015 e kadar olan haberci bir görev LISA Pathfinder ile) Kütleçekimsel dalgaların gözlemleri elektromanyetik spektrumdaki gözlemleri tamamlamaya garanti verir. Kara delikler ve nötron yıldızları, beyaz cüceler, süpernova patlamalarının türleri hakkında bilgi vermeleri beklenir.

Kara delikler ve diğer yoğun cisimler

Bir cismin kütlesinin yarıçapına oranı yeterince büyük olduğu zaman genel görelilik bir kara deliğin( hiçbir şeyin, ışığın bile kaçamadığı düşünülen) oluşumunun kaçabileceğini ileri sürer. Son zamanlarda kabul edilmiş 1.4 güneş kütleleri civarında nötron yıldızları, yıldızımsı kara delikler ve yıldız evrimi modelleri, büyük kütleli yıldızların gelişimi için final durum olduğu düşünülür. Genellikle bir galaksi merkezinde birkaç milyonluk güneş kütleye sahip bir süper kütleli kara deliğe sahiptir.

Genel göreliliğin denklemlerine dayanan simülasyon, kütleçekimsel dalgalar salan bir kara delik oluşturmak için göçen bir yıldız

Astronomik olarak yoğun cisimlerin kütleçekimsel enerjiyi elektromanyetik radyasyona çeviren fevkalade mekaniği, onlara en önemli özelliğini katar. Gaz maddelerin ya da tozun yıldız ya da süper kütleli kara deliklere düşüşü göz alıcı bir şekilde ışıldayan bazı cisimler için sorumlu olduğu düşünülür.(oldukça galaksi ile ilgili yıldız boyutundaki cisimler(mikro yıldızımsı gökcisimleri gibi) üzerindeki aktif çekirdeğin farklı türleri) Özellikle, yığılma yaklaşık ışık hızı ile uzaya fırlatılmış yüksel enerjili parçacıkların ışınlarına odaklı göreli jetlere neden olabilir. Genel görelilik bütün bu olayları modellemede merkez bir rol oynar ve gözlemler teori ile tahmin edilen kara deliklerin varlıkları için güçlü bir kanıt sağlar. Kara delikler ayrıca kütleçekimsel dalgalar için olan araştırmalarda amaçlarında tebliğ içindedir. İkili kara deliği birleştirme Dünyadaki detektörlere ulaşan en güçlülerden bazı yerçekimsel dalga sinyallerini takip etmelidir ve birleşmeden direk önceki safha, birleşme olaylarının mesafesini azaltmak için bir standart mum olarak kullanılabilir. Bu yüzden uzak mesafelerde kozmik genişlemenin araştırması olarak hizmet eder.

Kozmoloji

Bu mavi at nalı şeklindeki, parlak kırmızı galaksinin güçlü kütleçekimi tarafından tam bir halkada eğilmiş ve büyütülmüş uzak bir galaksidir.

Kozmolojinin geçerli modelleri kozmoloji sabitini Λ içeren Einstein’ in alan denklemelerine dayanır çünkü kozmosun büyük ölçekli dinamiğine büyük etkisi vardır.

uzay zaman metriğidir . Bu ileri denklemlerin eş yönlü ve homojen çözümleri, Friedmann-Lemaitre-Robertson-Walker çözümleri , Büyük Patlamadan daha evvel 14 milyon yıl süreyi aşkın gelişen bir evreni modellemeye fizikçiler için olanak sağlar. Astronomik gözlemlerle birkaç parametreler(mesela evrenin madde yoğunluğu) sağlandıktan sonra ilaveten gözlemlenen veriler modelleri test etmek için kullanılabilir. Tahminler, ilkel nükleosentez, evrenin yüksek ölçekli yapısı, periyodunda oluşan ilk kimyasal elementlerin bolluğunu ve varlığını ve termal bir ekodan özelliklerini içerir.( kozmik özgeçmiş radyasyonu ) Kozmolojik genişleme oranının astronomik gözlemleri, maddenin doğası gizemli kaldığı halde evrendeki toplam madde miktarının tahmin edilmesini sağlar. Bütün maddelerin yaklaşık %90 ı kara maddedir. (kütleye sahiptir fakat elektromanyetik olarak etkilemez ve bu yüzden direk gözlemlenemez) Ana hatlarıyla bu yeni tür maddenin parçacık fiziği çatısında kabul edilmiş bir tanımı yoktur. Uzak Süpernovanın kızıla kayma incelemelerinden gözlemlenen kanıtlar ve özgeçmiş kozmik radyasyonun ölçümleri ayrıca kozmik genişlemenin ivmelenmesine ya da karanlık enerjiye neden olan kozmolojik sabitinden önemli derecede evrenin gelişiminin etkilendiğini gösterir. Yaklaşık saniye kozmik zamanında güçlü hızlandırılmış genişlemenin enflasyon safhası adlı yeni bir faz 1980 yılında klasik kozmolojik modeller ile açıklanamayan birkaç karışık gözlemlerin yararına varsayılmıştır. Son günlerdeki kozmik özgeçmiş radyasyonunun ölçümleri bu senaryo için ilk kanıtla sonuçlandı. Fakat geçerli gözlemler ile sınırlanamayan mümkün enflasyon senaryolarının şaşırtıcı bir çeşitliliği vardır. Enflasyon safhasına öncü ve büyük patlama tuhaflığını tahmin eden klasik modellere yakın en erken evrenin fiziği daha geniş bir sorudur. Otoriter cevap henüz geliştirilmemiş olan kuantum kütleçekimi teorisine gerek vardır.

İleri kavramlar

Global geometri ve sebep gösteren yapı

Sonsuz bir Minkowski evreni Penrose–Carter diyagramı

Genel görelilikte bir ışığın titreşimine hiçbir şey yetişemez ya da yakalayamaz. Işık A dan X e gönderilmeden A olayından hiçbir etki diğer X yerine ulaşamaz. Neticede bütün ışık hayat çizgilerinin (geçersiz jeodezik) keşfi uzay zamanın nedensel yapısı hakkında ana bilgiler verir. Bu yapı sınırlı bir haritaya oturtmak için uzayın sonsuz geniş alanları ve sonsuz zaman aralıklarının daraltılmış olduğu Penrose-Carter diyagramlarını kullanarak gösterilebilir.(ışık hala standart uzay zaman diyagramlarında olduğu gibi köşegenlere doğru hareket eder)

Nedensel yapının öneminin farkına varan Roger Penrose ve diğerleri neyin evrensel geometri olarak bilindiğini geliştirdiler. Evrensel geometride çalışmanın amacı Einstein’ in denklemlerinin belli bir çözümü değildir. Bunun yerine bütün jeodezikler için doğru olan ilişkiler ( Raychaudhuri denklemleri gibi) ve maddenin doğası (genelde enerji koşulları kalıbında kullanılır) hakkında özel olmayan varsayımlar genel sonuçları türetmek için kullanılır.

Ufuklar

Temel metin: Ufuk (genel görelilik ve kara delik mekaniği

dönen kara deliğin dışındaki bölge, böyle bir kara delikten çekici enerjinin yanına geldiğinde önemli bir rol oynar

Evrensel geometriyi kullanarak bazı uzay zamanlar ufuklar olarak adlandırılan ve bir bölgeyi uzay zamanın geri kalanından ayıran, sınırları dâhil etmek için gösterilebilir. En iyi bilinen örnekleri kara deliklerdir: eğer kütle uzayın yeterince yoğun bir bölgesinde sıkıştırılırsa( ilgili ölçek uzunluğu Schwarzchild yarıçapı , halka hipotezi olarak tanımlı)  içeriden dışarıya ışık çıkamaz. Bir ışık titreşimini hiçbir cisim geçemediği için içteki bütün madde de hapsolmuştur. Dışarıdan içeriye geçiş hala mümkündür.(bu da kara deliğin ufku yani sınırının fiziksel bir engel olmadığını gösterir)

Kara deliklerin eski çalışmaları Einstein’ in denklemlerinin açık çözümlerine (özellikle statik bir kara deliği tanımlamak için kullanılan küresel olarak simetrik Schwarzchild çözümü ve dönen statik bir kara deliği tanımlamak ve dönen bir kara deliğin dışındaki bir bölge gibi ilginç özellikleri tanıştıran) simetrik eksenli yapılı Kerr çözümüne güvenildi. Evrensel geometriyi kullanarak sonraki çalışmalar kara deliklerin daha genel özelliklerini gösterdi. Bunlar,  enerji, çizgisel moment, açısal moment, belir bir zamandaki yerİ ve elektrik yükünü belirten on bir parametre ile karakterize edilen daha basit cisimlerdir. Bu kara delik eşsizliği teoremi ile belirtilir.(‘’ kara delikler life sahip değildir, bu da insanların saçından bir farkının olmadığını işaret eder)Bir kara delik oluşturmak için çöken kütleçekimsel bir cismin karışıklığına bakmazsak cisim daha basit olur.

Daha önemli bir biçimde termodinamik yasasına benzeyen kara delik mekaniği olarak bilinen yasaların genel bir topluluğu vardır. Mesela kara delik mekaniğinin ikinci yasası (genel bir kara deliğin olay ufkusunun alanı zamanla hiç azalmayacaktır) termodinamik sistemin entropisine benzerdir. Bu, Penrose metodu kullanılarak dönen bir kara delikten klasik araçlar ile çıkartılabilen enerjiyi kısıtlar. Kara delik mekaniğinin aslında termodinamik yasasının bir altkümesi olması güçlü bir kanıttır. Bu da kara delik mekaniğinin orijinal yasalarının değişimine neden olur. Mesela kara delik mekaniğinin ikinci yasası termodinamiğin ikinci yasasının bir kısmı olduğu için özelikle entropi artarsa kara deliğin alanının azalması mümkündür. Sıfır sıcaklığa sahip olmayan termodinamik cisimlerde olduğu gibi kara delikler termal radyasyon salabilirler. Kısmen klasik hesaplamalar onların aslında Planck’ in yasasında sıcaklık rolü oynayan yeryüzü kütleçekimi ile yapabildiğini gösterir. Bu radyasyon Hawking radyasyonu olarak bilinir.

Ufukların diğer türleri de vardır. Genişleyen bir evrende bir gözlemci, geçmişin bazı bölgelerinin ( parçacık ufku ) gözlemlenemeyeceğini ve geleceğin bazı bölgelerinin etkilenmeyeceğini ( olay ufku ) bulabilir. Minkowski uzayında bile ivmelenen gözlemci tarafından belirtildiğinde, Unruh radyasyonu olarak bilinen kısmen klasik bir radyasyon ile ilişkili ufuklar olacaktır.

Tuhaflıklar

Genel göreliliğin diğer genel bir özelliği tuhaflık olarak bilinen uzay zaman sınırlarının görünümüdür. Uzay zaman ışıksı ve zamansı jeodezikleri- serbest düşüşte ışık ve parçacıkların yol alabileceği bütün yollar- takip ederek araştırılabilir. Fakat bazı Einstein’ in denklemlerinin sonuçları eksik kenarlara(ışığın ve düşen parçacıkların yolunun beklenmedik bir sona vardığı ve geometrinin tam tamamlanmamış olduğu bölge) sahiptir. Daha ilginç durumlarda bunlar, sonsuza kadar giden Ricci sabiti gibi uzay zamanın eğikliğini karakterize eden geometrik niceliklerin olduğu eğiklik tuhaflıklarıdır. Hayat çizgisinin bittiği gelecek tuhaflıkları ile uzay zamanın iyi bilinen örnekleri Schwarzchild çözümü( statik ölümsüz bir kara delik içindeki bir tuhaflığı tanımlayan) ya da ölümsüz ve dönen bir kara delik içindeki halka şeklindeki tuhaflıklara sahip Kerr çözümüdür. Evreni tanımlayan Friedmann-Lemaitre-Robertson-Walker çözümleri ve diğer uzay zamanlar Büyük Patlama isimli hayat çizgisinin başladığı eski tuhaflıklara sahiptir ve bazıları da Büyük Çöküş gibi tuhaflıklara sahiptir. Bu örneklerin fazlaca simetrik olduğu farz edersek (bu yüzlen kolaylaşır) tuhaflıklarının oluşumunun idealleşmenin bir yapaylığı olması caziptir. Evrensel geometrinin metotlarını kullanarak kanıtlanan ünlü tuhaflık teoremleri bunun dışında gerçekçi madde özelliklerine sahip bir maddenin çöküşü, mutlak bir evrede ve genişleyen evrenin geniş bir sınıfının başlangıcında gerçekleştikten sonra, tuhaflıkların genel göreliliğin kapsamlı bir geleceğini söyler. Fakat teoremler, biraz tuhaflıkların özellikleri hakkında ve daha çok kapsamlı yapıların varlıklarını karakterize etmeye adanmış geçerli araştırmalar( hipotezi kurulan BKL varsayım isimli örneği) hakkındadır. kozmik sansür hipotezi , bütün gelecek tuhaflıkları (harika bir simetrisi olmayan gerçek özellikli madde) güvenlice ufkunun arkasında saklanır ve bu yüzden bütün uzak gözlemcilere görünmezdir. Henüz düzgün bir kanıt olmamasına rağmen numarasal benzetmeler geçerliliğine destekleyici kanıtlar sunar.

Evrim denklemleri

Temel metin: İlk değeri formülleştirme (genel görelilik

Einstein’ in denklemlerinin her bir çözümü bir evrenin bütün tarihini kuşatır. (şeylerin nasıl olduğunun sadece anlık bir fotoğrafı değildir; fakat bütün, mümkün ve madde dolu uzay zamandır) Her yerdeki geometrinin ve maddenin durumunu tarif eder. Genel eşdeğişkenlik nedeni ile Einstein’ in teorisi kendince metrik tensörünün zaman evrimini saptaması için yeterli değildir. Koordinat koşulu ile birleştirilebilir.(diğer alan teorilerindeki kapsam sabitlemeye benzer) kısmi türevlenebilir denklemler olarak Einstein’ in denklemlerini anlamak için onları evrenin evrimini tanımlayan bir yolda formülleştirmek yararlı olacaktır. Bu, uzay zamanın üç uzay boyutları ve bir zaman boyutuna bölündüğü ‘’3+1’’ ile adlandırılan formüller ile yapılır. En bilinen örneği ADM biçimciliğidir. Bu bozulmalar, genel göreliliğin uzay zaman evrim denklemleri, ilk koşullar belirtildikten sonra iyi huyludur, her zaman vardır ve eşsizce tanımlıdır. Einstein’ in alan denklemlerinin böyle formülleştirmeleri numarasal göreliliğin temelidir.

Evrensel ve hemen hemen yerel nitelikler

Evrim denklemlerinin görüşü derinden genel göreli fiziğin diğer yönü ile bağlanmıştır. Einstein’ in teorisinde bir sistemin toplam kütlesi ya da enerjisi gibi görünüşte basit görünen genel bir tanım bulmak mümkün değildir. Temel nedeni, herhangi bir fiziksel alan gibi kütleçekimsel alan belli bir enerji ile verilmesidir; fakat o enerjiyi yerelleştirmenin imkansız olduğunu temel olarak kanıtlar.

Yine de, kuramsal bir sonsuz uzak gözlemci ya da uygun simetrileri Komar kütlesi kullanarak bir sistemin toplam kütlesini tanımlamanın olasılıkları vardır. Eğer kütleçekimsel dalgalar ile enerjiyi sonsuza taşıyarak sistemin toplam kütlesinden dışarı çıkartırsak sonuç önemsiz sonsuzluktaki Bondi kütlesidir. Klasik fizikse olduğu gibi kütlelerin pozitif olduğu gösterilebilir. Evrensel tutarlı tanımlar momentum ve açısal momentum için vardır. Ayrıca o sistemi içeren uzayın sonlu bir bölgesinde tanımlanan nitelikleri kullanarak formülleştirilen izole edilmiş bir kütle gibi, hemen hemen yerel nitelikleri tanımlamak için birçok çaba vardır. Çember tahmininin daha hassas bir formülleştirmesi gibi izole edilmiş sistemler hakkındaki genel açıklamalar için, amaç yararlı bir nitelik elde etmektir.

Kuantum teorisi ile ilişki

Eğer genel görelilik, kuantum teorisi , modern fiziğin iki direğinden birisi olarak düşünülürse katı hal fiziğinden elementsel parçacıklara madde anlayışının temeli diğeridir. Fakat genel görelilik ile kuantum teorisinin fikirlerinin nasıl bağdaştırılacağı hala açık bir sorudur.

Eğri uzay zamanda kuantum alan teorisi

Temel metin: Eğik uzay zamanda kuantum teorisi Modern elementsel parçacık fiziğinin temelini oluşturan olağan kuantum alan teorileri, Dünyada bulunan kiler gibi zayıf yerçekimsel alanlarda mikroskobik parçacıkların davranışlarını tanımlarken mükemmel bir yaklaş olan Minkowski uzayını tanımlarlar. Kendisini niceleme ihtiyacı yeterince güçlü olmayan ve maddeyi etkilemen için kütleçekiminin yeterince güçlü olduğu yerdeki durumları tanımlamak için fizikçiler eğik uzay zamanda kuantum alan teorileri formüle ettiler. Bu teoriler, eğik özgeçmiş uzay zamanı tanımlamak için genel göreliliğe dayanır ve o uzay zamandaki kuantum maddesinin davranışını belirlemek için genelleştirilmiş kuantum alan teorisi tanımlar. Bu biçimciliği kullanarak kara deliklerin Hawking radyasyonu olarak bilinen parçacıkların kara cisim spektrumunu yayması gösterilebilir.(Hawking radyasyonu zamanla onların uçup giderek yol olacağı mümkün atını gösterir.) Yukarıdakilerin özeti olarak, bu radyasyon, kara deliklerin termodinamiği için önemli bir rol oynar.

Kuantum kütleçekimi

Temel metin: Kuantum yerçekimi

Ayrıca gör: İp teorisi , Standart genel görelilik , Kuantum kütleçekimi döngüsü ve Nedensel diziler

Tuhaflıkların görünmesinin yanı sıra(eğiklik uzunluk ölçeğinin mikroskobik olduğu zaman) maddenin kuantum tanımı ile uzay zamanın geometrik bir tanımı arasındaki tutarlılık için istek, kuantum kütle çekiminin tam bir teorisine olan ihtiyacı gösterir: kara deliklerin ve erken evrenin içinin yeterli bir tanımı ve kuantum fiziği dilinde uzay zamanın geometrisi ile ilişkili ve kütleçekimi varlığında bir teori için)

Calabi-Yau çeşitlisi ip teorisi ile ilave boyutların sıkıştırılabilirlik yollarından birisi

Temel etkileşimleri belirten elementsel parçacık fiziğinde kullanılan sıradan kuantum alan teorilerini genelleştirmek için bir girişim, kütleçekimini dâhil etmek için ciddi problemlere neden olur. Düşük enerjilerde bu yaklaşım, kabul edilebilir etkili kütleçekiminin kuantum alan teorisi ile sonuçlanan bir başarıyı kanıtlar. Fakat yüksek enerjilerde sonuçlar bütün kestirimci gücün model yokluğudur. (yeniden normalleştirilemememe)

kuantum kütleçekim döngüsünde kullanılan türün basit bir fırıl ağı

Bu sınırlamaları yenmek için girişim nokta parçacıkların bir kuantum teorisi olmayan fakat minik bir boyutlu genişlemiş cisimlerin ip teorisidir. Bu teori, kütleçekimini içeren bütün parçacıkların ve etkileşimlerinin birleştirilmiş bir tanımı olacağına umut verir: bilinen üç boyuta ek olarak uzayın ek altı boyutları gibi anormal özelliklerin karşılığını vermek için bedel. İkinci süper ip devrinde ip teorisinin ve süpersimetri ile genel göreliliğin birleşimi M kuramı (tutarlı ve eşsiz tanımlı), kuantum kütleçekimi teorisi olarak bilinen on bir boyutlu model hipotezinin bir bölümünü oluşturduğu varsayıldı.

Diğer yaklaşım kuantum teorisinin standart niceleme işlemi ile başlar. Genel göreliliğin ilk-değer-formülleştirmesini kullanarak sonuç tam tamamlanmamış olan Wheeler-deWitt denklemidir. Fakat Ashtekar değişkenleri ile geleceği parlak kuantum kütleçekimi döngüsü modeli sağlanır. Uzay, fırıl (spin) ağı ile adlandırılan ve farklı adımları zamanla geliştiren ağ gibi bir yapı ile ifade edilir. Genel görelilik ve kuantum teorisinin hangi özelliklerinin kabul edilmiş ve hangi seviye değişikliklerinin tanıştırıldığına bağlı olarak dinamik üçgenleştirme, nedensel diziler, bükücü modeller ya da kuantum kozmolojisinin modellerine bağlı yol integralleri gibi geçerli bir kuantum teorisine ulaşmak için çok fazla başka girişimler vardır.

Bütün aday teoriler hala üstesinden gelinmesi gereken kavramsal ve biçimsel sorunlara sahiptir. Gelecekte parçacık fizik deneyleri ve kozmolojik gözlemler ile sağlanan bilgiler ile işe yarar bir umudun olmasına rağmen kuantum kütleçekimi tahminleri deneysel testlere koymanın henüz bir yolu yoktur.( bu yüzden tahminlerin değişikliğe uğradığı adaylar arasında da karar vermenin bir yolu yoktur.)

Geçerli durumlar

Genel görelilik bugüne kadar birçok kesin gözlemsel ve deneysel testler veren kozmoloji ve kütleçekimi modelinin fazlaca başarılı modelini ortaya çıkarmaktadır. Fakat teorinin tamamlanmadığını gösteren güçlü bulgular vardır. Kuantum kütleçekiminin ve uzay zaman tuhaflıklarının gerçeklikleri sorusu açık kalır. Kara madde ve kara enerji için kanıt olarak alınan gözlemsel bilgiler yeni bir fizik için ihtiyacı gösterir. Genel görelilik ileriki araştırmalar imkânınca zengindir. Matematiksel göreciler Einstein’ in denklemlerinin temel özelliklerini ve tuhaflıkların doğasını anlamak için uğraşırlar ve artan bir şekilde güçlü bilgisayar simülasyonları (kara deliklerin birleşmesi gibi) kullanırlar. Kütleçekimsel dalgaların ilk direk gözlemi için daha güçlü kütleçekimsel alanın geçerliliğini test etmek için fırsatları yaratma umudu ile yarış devam ediyor. Yayınından doksan yıl sonra genel görelilik araştırmaların yüksekçe bir aktif alanı olarak devam eder.

Ayrıca gör

  • Genel göreliliğin matematiğine başlangıç
  • İzafiyet önceliği kargaşası
  • Ricci yüksek matematiği

  • Genel göreliliğin testleri
  • Kütleçekimsel fizik ve göreliliğin hayat çizgisi
  • Gengel görelilikte iki cisim problemi

Kaynakça

  1. "Nobel Prize Biography". Nobel Prize. 23 Haziran 2015 tarihinde kaynağından arşivlendi. http://web.archive.org/web/20150623030822/http://www.nobelprize.org:80/nobel_prizes/physics/laureates/1921/einstein-bio.html.
  2. Pais 1982, ch. 9-15, Janssen 2005; birçok orijinal makalenin baskısını içeren, güncel bir koleksiyon Renn 2007; erişilebilir bir genel bakış Renn 2005, ss. 110. Erken dönemde yazılmış bir kilit makale Einstein 1907,Pais 1982, ch. 9. Alan denklemlerini ortaya koyan bir yayın Einstein 1915, Pais 1982, ch. 11–15
  3. Schwarzschild 1916a, Schwarzschild 1916b ve Reissner 1916 (sonradan burada tamamlanmıştır Nordström 1918)
  4. Einstein 1917, Pais 1982, ch. 15e
  5. Hubble'ın orijinal makalesi Hubble 1929; erişilebilir bir genel bakış için Singh 2004, ch. 2–4
  6. Gamow 1970
  7. Pais 1982, ss. 253–254
  8. Kennefick 2005, Kennefick 2007
  9. Pais 1982, ch. 16
  10. Thorne, Kip (2003). "Warping spacetime". The future of theoretical physics and cosmology: celebrating Stephen Hawking's 60th birthday. Cambridge University Press. s. 74. ISBN 0-521-82081-2. http://books.google.com/books?id=yLy4b61rfPwC., Sayfa 74 özeti
  11. Ehlers 1973, sec. 1
  12. Arnold 1989, ch. 1
  13. Ehlers 1973, ss. 5f
This article is issued from Vikipedi - version of the 12/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.